BOOKS BY CATEGORY
Your Account
Biological Magnetic Resonance Volume 3
Price
Quantity
€67.09
(To see other currencies, click on price)
Paperback / softback
Add to basket  

MORE ABOUT THIS BOOK

Main description:

We are proud to present Volume 3 of Biological Magnetic Resonance, a series that has met with praise from the scientific community. This volume covers the new applications of various multiple irradia- tion techniques to the NMR of biomolecules; the chapter of Keller and Wuthrich describes much of the technique and its applications to hemo- proteins. The ESR of some hemoproteins in the single crystal is described by Chien and Dickinson, who also include discussions of techniques and methods for single-crystal ESR of paramagnetically intrinsic and spin- labeled protein crystals. Mims and Peisach describe the latest applications and results in electron spin echo spectroscopy of several metalloproteins. Two ESR spin probe techniques are reviewed. Chasteen describes the methods and applications of vanadyl(JV) to several systems. Ohnishi and Tokutomi describe studies of phase separations in mixed and model mem- branes by the nitroxide spin probe technique. We have been successful in continuing to provide topics that are timely and experimentally informative with a heavy emphasis on biolo- gically relevant applications.
We thank our colleagues in the scientific com- munity for their suggestions on future coverage-we will remain receptive to future suggestions and comments on this series. A tentative topic list for forthcoming volumes is given on the following pages.


Contents:

1 Multiple Irradiation 1H NMR Experiments with Hemoproteins.- 1. Introduction.- 1.1. Structure and Biological Functions of Hemoproteins.- 1.2. 1H NMR Spectra of Hemoproteins.- 1.3. 1H NMR Spectra of Isolated Heme Groups.- 1.4. Purpose of This Review.- 2. Use of Multiple Irradiation 1H NMR Techniques.- 2.1. Double Irradiation Difference Spectra.- 2.2. Spin Decoupling.- 2.3. Saturation Transfer.- 2.4. Nuclear Overhauser Enhancement and Spin Diffusion.- 2.5. Two-Dimensional NMR.- 3. Studies of the Heme Groups and the Axial Ligands of the Heme Iron.- 3.1. Individual Assignments of the Heme Proton Resonances.- 3.2. Survey of Heme c1H NMR Data Obtained with Various Cytochromes c.- 3.3. Studies of the Axial Ligands in Cytochromes c.- 4. Studies of Aromatic Amino Acid Residues.- 4.1. High-Resolution 1H NMR and Internal Mobility of Aromatic Rings.- 4.2. Identification of Aromatic Spin Systems in Hemoproteins.- 4.3. Survey of Results Obtained for c-Type Cytochromes.- 5. Nuclear Overhauser Effects for Studies of Nonbonding Heme-Polypeptide Interactions.- 5.1. Orientation of the Heme Group in Cytochrome b5.- References.- 2 Vanadyl(IV) EPR Spin Probes: Inorganic and Biochemical Aspects.- 1. Introduction.- 2. Inorganic Chemistry and Spectroscopy of the Vanadyl Ion.- 2.1. Geometries and Stabilities of Coordination Complexes.- 2.2. Optical Spectral Properties.- 2.3. EPR Spectral Properties.- 2.4. Analysis of EPR Spectra of Frozen Solution Samples.- 2.5. Measurement of Rotational Correlation Times.- 2.6. Model Compound Studies.- 3. Protein Studies.- 3.1. The Transferrins.- 3.2. Bovine Insulin.- 3.3. Bovine Carbonic Anhydrase.- 3.4. Bovine Carboxypeptidase A.- 3.5. Bovine Serum Albumin.- 3.6. Nucleases and Phosphatases.- 3.7. Experimental Techniques.- 4. Biomineralization Processes.- 5. Nucleic Acids.- 6. Biological Vanadium.- 6.1. Regulation of Cation Transport in Mammalian Systems.- 6.2. Other Systems.- 7. Liquid Crystals and Micelles.- 8. Biogeochemical Studies.- 8.1. Petroleum Deposits.- 8.2. Humic and Fulvic Acids.- 8.3. Adsorption Studies.- 9. A Look to the Future.- References.- 3 ESR Studies of Calcium- and Proton-Induced Phase Separations in Phosphatidylserine-Phosphatidylcholine Mixed Membranes.- 1. Introduction-Spin Probe (ESR) Applications to Membrane Studies.- 2. Examples of ESR Spectral Changes Associated with PC* Clustering or Concentration in Membranes.- 3. Ca2+-Induced Phase Separation in PS-PC Membranes.- 3.1. Experimental Aspects-Membrane Preparation on a Millipore Filter Pore Surface.- 3.2. Crystallization of PS in the Membranes.- 3.3. Phase Diagram of PS-PC Membranes in the Presence of Ca2+.- 3.4. Concentration of Ca2+ Required for the Phase Separation.- 3.5. Selectivity for Divalent Cations and Competition with Local Anesthetic.- 3.6. Rate of Phase Separation.- 4. H+-Induced Phase Separation in PS-PC Membranes.- 4.1. Phase Separation on Lowering pH.- 4.2. Phase Separation on Decreasing Salt Concentration.- 5. Disappearance of Ca2+-Induced Phase Separation in PS-PC Membranes.- 5.1. Replacement of Ca2+ with H+ in Acidic or Low-Ionic- Strength Media.- 5.2. Disappearance in Nonbuffered Salt Solution.- 6. Ca2+-Induced Phase Separation in PA-PC Membranes.- 7. Discussion.- 7.1. Surface Hydrophobicity Caused by Ca2+ Binding as a Driving Force for the Phase Separation.- 7.2. Characteristic Difference between Ca2+ and Mg2+ for PS-PC Membranes.- 7.3. Are the Phase Separations Lateral?.- 7.4. Biological Significance.- References.- 4 EPR Crystallography of Metalloproteins and Spin-Labeled Enzymes.- 1. Introduction.- 2. Experimental Methods and Procedures.- 2.1. Growing Crystals.- 2.2. Mixed Crystals.- 2.3. Handling Protein Crystals.- 2.4. Isotopic Labeling.- 2.5. Spin Labeling.- 2.6. Crystal Type.- 2.7. Goniometer.- 2.8. Mounting.- 2.9. Data Acquisition.- 3. Data Processing.- 3.1. Theory.- 3.2. Diagonalization.- 3.3. Other EPR Tensors.- 4. EPR Theory.- 4.1. General Spin Hamiltonians.- 4.2. g Tensor.- 4.3. Hyperfine Tensor.- 4.4. Superhyperfine Tensor.- 4.5. Ab Initio Calculations.- 4.6. Spin Labels.- 5. Structure Determinations.- 5.1. g Tensor and Heme Plane Orientation.- 5.2. Stereochemistry of Ligand Binding.- 5.3. Unpaired Spin Density Distribution and Electron Structure.- 5.4. Zero-Field Splitting.- 5.5. Protein Fine Structure by Spin Labeling.- 5.6. Active Site Structure.- 6. Lattice Disorder.- 7. Molecular Dynamics.- 8. Miscellaneous Studies.- 9. Appendix.- 9.1. Complete Working Version of ANL208E and Subroutines MATINV, FUNC, and ZIPPO for Least Squares Fitting of N sets of (gi2, ?i) for One Plane.- 9.2. Subroutine FUNC.- 9.3. Subroutine MATINV.- 9.4. Subroutine ZIPPO.- 9.5. Sample Data Deck.- 9.6. Sample Program Output for KEYSS = 1.- 9.7. Data Deck Description.- References.- 5 Electron Spin Echo Spectroscopy and the Study of Metalloproteins.- 1. Introduction.- 2. The Design of Electron Spin Echo Experiments.- 2.1. The Time Scale.- 2.2. The Microwave Transmitter.- 2.3. The Microwave Receiver.- 2.4. Cavity Design.- 2.5. Sensitivity: Comparison's with c.w. Spectroscopy.- 2.6. Temperature and Magnetic Concentrations in Electron Spin Echo Experiments.- 2.7. Choice of Experimental Frequency Range.- 3. Echo Envelope Spectroscopy.- 3.1. The Two-Pulse Echo Envelope.- 3.2. Factoring Contributions Due to Several Nuclei.- 3.3. The Three-Pulse Echo Envelope.- 3.4. Fourier Transformation of the Echo Envelope.- 3.5. Echo Envelope Spectroscopy and ENDOR.- 4. The Detection of Small Perturbations.- 4.1. ENDOR by Spin Echoes.- 4.2. Electric-Field-Induced Shifts.- 4.3. The Detection of Weak Coupling between Electron Spins.- 5. Measurement of the Spin-Lattice Relaxation Time T1.- 6. Summary.- References.


PRODUCT DETAILS

ISBN-13: 9781461332039
Publisher: Springer (Springer-Verlag New York Inc.)
Publication date: October, 2011
Pages: 288
Weight: 450g
Availability: Available
Subcategories: Biochemistry
Related books
From the same series

CUSTOMER REVIEWS

Average Rating