(To see other currencies, click on price)
MORE ABOUT THIS BOOK
Main description:
As stated by its first editor, Dr. D. B. Roodyn, the primary goal of the series Subcellular Biochemistry is to achieve an integrated view of the cell by bringing together results from a wide range of different techniques and disciplines. This volume deals with the applications of fluorescence spectroscopy to membrane research. It seeks to present complementary biochemical and bio physical data on both the structure and the dynamics of biological membranes. Biophysics and biochemistry are improving more and more in their ability to study biomembranes, overlapping somewhat in this area and explaining the functioning of the whole cell in terms of the properties of its individual com ponents. Therefore, we have brought together an international group of experts in order to report on and review advances in fluorescence studies on biological membranes, thereby highlighting subcellular aspects. The first chapters present a critical evaluation of the current applications of dynamic and steady-state fluorescence techniques. Subsequent chapters dis cuss more specific applications in cells, biological membranes, and their con stituents (lipids, proteins).
Contents:
1 Biomembrane Structure and Dynamics Viewed by Fluorescence.- 1. Introduction to Fluorescence.- 2. Dynamics and Structure of Membranes.- 2.1. Lateral and Rotational Diffusion.- 2.2. Orientational Order and Packing.- 2.3. Asymmetry.- 2.4. Lipid Domains.- 3. Fluorescence Techniques and What They Make Visible.- 3.1. Fluorescence Depolarization.- 3.2. Quenching.- 3.3. Fluorescence Energy Transfer.- 3.4. Fluorescence Recovery after Photobleaching (FRAP).- 3.5. Excimer Fluorescence.- 4. Summary and Conclusions.- 5. References.- 2 Dynamic Structure of Membranes and Subcellular Components Revealed by Optical Anisotropy Decay Methods.- 1. Introduction.- 2. Optical Anisotropy Decay.- 2.1. Principle of Optical Anisotropy Decay Method.- 2.2. Experimental Techniques.- 2.3. Information Contained in an Anisotropy Decay.- 2.4. Optical Anisotropy Decay as a Tool in Bioscience.- 3. Examples of Application.- 3.1. Dynamic Structure of Membranes Probed by Diphenylhexatriene.- 3.2. Protein Rotations in Membrane and on Membrane Surface.- 3.3. Internal Motion of DNA.- 3.4. Internal Motion of Actin Filament.- 3.5. Dynamic Structure of Myosin Filament.- 4. Concluding Remarks.- 5. References.- 3 Principles of Frequency-Domain Fluorescence Spectroscopy and Applications to Cell Membranes.- 1. Introduction.- 2. Comparison of Time- and Frequency-Domain Measurements.- 2.1. A First-Generation Frequency-Domain Fluorometer.- 2.2. Resolution of a Two-Component Mixture.- 3. Theory of Frequency-Domain Fluorometry.- 3.1. Decays of Fluorescence Intensity.- 3.2. Decays of Fluorescence Anisotropy.- 4. Intensity Decays of DPH-Labeled Membranes.- 5. Anisotropy Decays of Labeled Membranes.- 5.1. Hindered Rotations of Diphenylhexatriene.- 5.2. Anisotropic Rotations of Perylene.- 6. Time-Resolved Emission Spectra.- 6.1. Calculation of Time-Resolved Emission Spectra.- 6.2. Time-Resolved Emission Centers of Gravity and Spectral Half-Widths.- 6.3. Time-Resolved Spectral Data for Patman-Labeled Membranes.- 7. Energy Transfer in Membranes.- 7.1. Distribution of Distances in a Covalently Linked Donor-Acceptor Pair.- 8. A 2-GHz Frequency-Domain Fluorometer.- 8.1. Picosecond Resolution of Tyrosine Intensity and Anisotropy Decays.- 8.2. Measurement of a 8-psec Correlation Time.- 9. Future Developments.- 10. Summary.- 11. References.- 4 Time-Resolved Fluorescence Depolarization Techniques in Model Membrane Systems: Effect of Sterols and Unsaturations.- 1. Introduction.- 2. Intrinsic Motional Properties of Some Widely Used Fluorescent Probes.- 2.1. Motional Characteristics.- 2.2. Excited-State Characteristics.- 3. Sterol-Phospholipid Interactions in Model Membranes.- 3.1. Cholesterol-Phospholipid Interactions: Lecithin as Bilayer Matrix.- 3.2. Cholesterol-Phospholipid Interactions: Phospholipids Other Than Lecithin as Bilayer Matrix.- 3.3. Cholesterol Chemical Modification: Effect on Phospholipid Fatty Acyl Chains Order and Dynamics.- 4. Concluding Remarks.- 5. References.- 5 Fluorescence Polarization to Evaluate the Fluidity of Natural and Reconstituted Membranes.- 1. Introduction.- 1.1. Aims and Scope of This Chapter.- 1.2. Mechanism of Action and Biological Significance of Fluorescence Polarization Measurements of Membrane Fluidity.- 2. Methodology.- 2.1. Theory of Fluorescence Polarization for Ion-Membrane Measurements.- 2.2. Probe-Membrane Interactions.- 2.3. Probe-Ion Interactions.- 3. Current Advancements in the Measurement of Ion-Membrane Interactions Using Fluorescence Polarization.- 3.1. Natural Membranes.- 3.2. Reconstituted Membranes.- 4. Critical Evaluation of the Significance of Ion-Membrane Measurements.- 4.1. Advantages of Fluorescence Polarization for Evaluation of Ion-Membrane Interactions.- 4.2. Limitations of Fluorescence Polarization for Measurement of Ion-Membrane Interactions.- 4.3. Substantiation of the Fluorescence Polarization Measurements of Ion-Membrane Interactions.- 5. Concluding Remarks.- 6. References.- 6 Fluidity of Thyroid Plasma Membranes.- 1. Introduction.- 2. Thyroid Plasma Membranes.- 2.1. Enriched Plasma Membrane Fractions.- 2.2. Chemical Characterization of Purified Plasma Membranes.- 2.3. Enzymic Characterization of Purified Plasma Membranes.- 2.4. Subfractionation of Thyroidal Plasma Membranes.- 2.5. Characterization of Thyroid Plasma Membrane Subfractions.- 3. Fluidity of Thyroid Plasma Membranes.- 3.1. Fluidity Measurements.- 3.2. Fluidity of Thyroid Subcellular Fractions.- 3.3. Fluidity of a P2 Fraction in Reconstituted Thyroid Plasma Membranes.- 3.4. Fluidity Characteristics of Plasma Membrane Subfractions.- 4. Modulation of the Adenylate Cyclase Activity by Manipulating the Plasma Membrane Composition.- 4.1. Incorporation of Phospholipids.- 4.2. Incorporation of Gangliosides.- 4.3. Incorporation of Dolichol and Dolichyl Derivatives.- 4.4. Addition of Membrane-Perturbing Drugs.- 5. Involvement of Membrane Fluidity on Human Normal and Pathological Thyroid Glands.- 6. References.- 7 Spectroscopic Analysis of the Structure of Bacteriorhodopsin.- 1. Introduction.- 2. Principle of the Fluorescence Energy Transfer Technique.- 3. Three-Dimensional Disposition of the Retinal Chromophore in the Purple Membrane.- 3.1. In-Plane Location.- 3.2. Transmembrane Location.- 3.3. Orientation of the Molecular Plane.- 4. In-Plane Location of NBD (7-Chloro-4-Nitrobenzo-2-Oxa-l,3-Diazole) Bound to Lys-41 in the Purple Membrane.- 5. Conformational Prediction of Bacteriorhodopsin Molecule.- 6. References.- 8 Structure and Dynamics of the Liver Microsomal Monoxygenase System.- 1. Introduction.- 1.1. General Structure of Biological Membranes.- 1.2. Peroxidation of Membrane Lipids.- 1.3. Microsomal Monoxygenase.- 2. Membrane Dynamics and Order Studied by Fluorescence.- 2.1. Biophysical Consequences of Lipid Peroxidation.- 2.2. Mobility of Membrane-Bound Cytochrome P-450.- 2.3. Rotational Mobility of Cytochrome P-450 in Peroxidized Rat Liver Microsomes.- 2.4. Structure of Free and Membrane-Bound Cytochrome P-450.- 2.5. Structure of NADPH-Cytochrome P-450 Reductase.- 2.6. Interaction of Cytochrome P-450 and Its Reductase in Membranes.- 2.7. Lipid-Protein Interactions Studied by DPH Fluorescence Anisotropy.- 3. References.- 9 Fluorescence Studies on Prokaryotic Membranes.- 1. Introduction.- 2. Fluorescent Probes.- 3. Structural Aspects of Bacterial Membranes.- 3.1. Outer Membrane of Gram-Negative Bacteria.- 3.2. Molecular Interactions.- 3.3. Phase Transitions and Homeoviscous Adaptation.- 3.4. Effects of Alcohols.- 3.5. Permeability of the Outer Membrane to Hydrophobic Substances.- 3.6. Membrane-Potential-Related Permeability Changes.- 3.7. Factors Increasing Cell Resistance and Membrane Stability.- 4. Periplasm.- 5. Incorporation of Exogenous Lipids into Prokaryotic Membranes.- 5.1. Gram-Negative Bacteria.- 5.2. Other Bacteria.- 5.3. Effect of Lipid Uptake on Membrane Function.- 5.4. Interactions with Vehicle Liposomes.- 6. Concluding Remarks.- 7. References.- 10 The Study of Cytoskeletal Protein Interactions by Fluorescence Probe Techniques.- 1. Introduction.- 2. The Cytoskeleton.- 2.1. Organization of Cytoskeletal Proteins.- 2.2. Assembly of Actin Filaments.- 3. Fluorescence Probe Techniques.- 3.1. Introduction.- 3.2. Energy Transfer.- 3.3. Fluorescence Enhancement.- 3.4. Anisotropy.- 3.5. Fluorescence Photobleaching Recovery.- 3.6. Quenching.- 3.7. Pressure Relaxation.- 4. Alternative Luminescence Techniques.- 4.1. Introduction.- 4.2. Transient Absorption Anisotropy.- 4.3. Phosphorescence.- 5. Summary and Future Prospects.- 6. References.- 11 Fluorescent Probes for the Acetylcholine Receptor Surface Environments.- 1. Introduction.- 2. An Overview of AchR Properties.- 2.1. Structural Characteristics of Torpedo californica AchR.- 2.2. Ligand Binding and Pharmacological Properties.- 3. PTSA: A Probe for Measuring AchR-Mediated Ionic Fluxes in the Physiological Time Scale.- 3.1. Stopped-Flow Assays for AchR-Mediated Ionic Fluxes.- 3.2. Stopped-Flow Assay with PTSA and Thallous Ion.- 4. Pyrene-1-Sulfonyl Azide (PySA): A Probe for the Study of the AchR-Lipid Interface.- 4.1. Optical Properties of PySA and Its Photoproducts.- 4.2. Labeling of the AchR.- 4.3. Applications of PySA to the Study of AchR Structure and Function.- 5. Pyrene Maleimide (PM): The Labeling of a Functionally Relevant Sulfhydryl Group.- 5.1. Labeling of Solubilized Receptor.- 5.2. Labeling of Native Membranes.- 6. State and Organization of the Lipid Bilayer in AchR Membranes.- 6.1. Probing of AchR Membranes with Pyrene.- 6.2. Fluidity of the AchR Membranes as Probed by DPH and TMA-DPH.- 7. Summary.- 8. References.- 12 Structural Basis and Physiological Control of Membrane Fluidity in Normal and Tumor Cells.- 1. Introduction.- 2. Quantitative Contribution of Individual Types of Lipid to Membrane Fluidity.- 2.1. Cholesterol, Sphingomyelin, and Fatty Acyl (Un)saturation.- 2.2. Cell Biological Implications of Preferential Interactions between Individual Lipids.- 3. Alterations in Membrane Fluidity in Lymphoid Tumor Cells.- 3.1. Tumor Cell Type and Location.- 3.2. Plasma Lipoproteins and Cholesterol Biosynthesis.- 4. Effects of Dietary Lipids on Membrane Fluidity.- 5. References.- 13 Fusion of Enveloped Viruses with Biological Membranes: Fluorescence Dequenching Studies.- 1. Introduction.- 2. Receptors for Enveloped Viruses.- 2.1. Myxoviruses.- 2.2. Paramyxoviruses.- 2.3. Togaviruses.- 2.4. Rhabdoviruses.- 2.5. Retroviruses.- 2.6. Herpesviruses.- 2.7. Other Enveloped Viruses.- 3. Interaction of Enveloped Viruses with Receptor-Depleted Cells.- 3.1. Use of Antimembrane Antibodies or Polypeptide Hormones to Mediate Virus Attachment.- 3.2. Implantation of Receptors or Binding Proteins for Enveloped Virions into Recipient Cell Membranes.- 4. Theoretical Aspects of the Use of Fluorescence Dequenching to Measure Viral Fusion.- 5. Fusion of Enveloped Viruses with Animal Cells and Biological Membranes: Studies with Intact Virions.- 6. Use of Fluorescent Dequenching Methods to Study Fusion of Enveloped Viruses with Biological Membranes Lacking Virus Receptors.- 7. Role of Viral Glycoproteins in the Process of Virus Membrane Fusion: Studies with Reconstituted Viral Envelopes.- 8. Fusion of Enveloped Viruses with Negatively Charged and Neutral Liposomes.- 9. Role of Conformational Changes and Cooperativity of Viral Proteins in Mediating Membrane Fusion.- 10. Conclusions.- 11. References.
PRODUCT DETAILS
Publisher: Springer (Springer-Verlag New York Inc.)
Publication date: December, 2011
Pages: 465
Weight: 714g
Availability: Available
Subcategories: Biochemistry
From the same series