(To see other currencies, click on price)
MORE ABOUT THIS BOOK
Main description:
This thesis describes a proof-of-principle experiment demonstrating a technique for stable isotope enrichment called Magnetically Activated and Guided Isotope Separation (MAGIS). Over the past century many enriched isotopes have become available, thanks largely to electromagnetic separators called calutrons. Due to substantial maintenance and operating costs, the United States decommissioned the last of its calutrons in 1998, leading to demand for alternative methods of isotope separation. The work presented here suggests the promise for MAGIS as a viable alternative to the calutrons.
The MAGIS technique combines optical pumping with a scalable magnetic field gradient to enrich atoms of a specific isotope in an atomic beam. Benchmarking this work against the calutron using lithium as a test case, the author demonstrated comparable enrichment in a manner that should scale to the production of similar quantities, while requiring vastly less energy input.
Feature:
Nominated by the University of Texas at Austin, USA, as an outstanding Ph.D. thesis
Describes a novel technique for stable isotope enrichment with broad potential across many isotopes
Offers a detailed description of the proof-of-principle experimental setup and measurement analysis
 
Back cover:
This thesis describes a proof-of-principle experiment demonstrating a technique for stable isotope enrichment called Magnetically Activated and Guided Isotope Separation (MAGIS). Over the past century many enriched isotopes have become available, thanks largely to electromagnetic separators called calutrons. Due to substantial maintenance and operating costs, the United States decommissioned the last of its calutrons in 1998, leading to demand for alternative methods of isotope separation. The work presented here suggests the promise for MAGIS as a viable alternative to the calutrons.The MAGIS technique combines optical pumping with a scalable magnetic field gradient to enrich atoms of a specific isotope in an atomic beam. Benchmarking this work against the calutron using lithium as a test case, the author demonstrated comparable enrichment in a manner that should scale to the production of similar quantities, while requiring vastly less energy input.
Contents:
Introduction.- Application to Lithium - Experiment Overview.- Measurements.- Apparatus Scaling, Beyond Lithium, and Conclusions.
PRODUCT DETAILS
Publisher: Springer (Springer International Publishing)
Publication date: December, 2015
Pages: 160
Availability: Not available (reason unspecified)
Subcategories: Radiology
MEET THE AUTHOR
Dr Thomas Mazur is now with the School of Medicine, Washington University in St Louis, USA. He completed his PhD with Prof Mark Raizen at the University of Texas at Austin in 2014.
From the same series
Katrine Kirkeby Skeby
Florian de Nanteuil
Humeshkar Bhaskar Nemala
Janet T. F. Lau
Tsubasa Inokuma
Anja Schmidt
Jonathan Bortfeldt
Fiona Hatton
Mathias Munschauer
Kirsten Schnorr
Philip Bittihn
Ali Kemal Yetisen
Maria Jesus Lerma Garcia
Martin Lorenz Stein
Ismail Adeniran
Margarita Puentes Vargas
Jianxian Gong
Colm Duffy
Zaozao Qiu
Jason A. Woolford
Michael A. Colman
Tsukasa Mizuhara
Christopher Schirwitz
Janet T. F. Lau
Chiara Gualandi
Chen Davidovich
Yusuke Ohta
Tsubasa Inokuma
Anja Schmidt
Maria Jesus Lerma Garcia
Jane Becker
Colm Duffy
Zaozao Qiu
Jason A. Woolford
Chiara Gualandi
Chen Davidovich
Yusuke Ohta