(To see other currencies, click on price)
MORE ABOUT THIS BOOK
Main description:
This book explores the relaxation dynamics of inner-valence-ionized diatomic molecules on the basis of extreme-ultraviolet pump-probe experiments performed at the free-electron laser (FEL) in Hamburg. Firstly, the electron rearrangement dynamics in dissociating multiply charged iodine molecules is studied in an experiment that made it possible to access charge transfer in a thus far unexplored quasimolecular regime relevant for plasma and chemistry applications of the FEL. Secondly the lifetime of an efficient non-radiative relaxation process that occurs in weakly bound systems is measured directly for the first time in a neon dimer (Ne2). Interatomic Coulombic decay (ICD) has been identified as the dominant decay mechanism in inner-valence-ionized or excited van-der-Waals and hydrogen bonded systems, the latter being ubiquitous in all biomolecules. The role of ICD in DNA damage thus demands further investigation, e.g. with regard to applications like radiation therapy.
Feature:
Nominated as an outstanding Ph.D. thesis by Max Planck Institute for Nuclear Physics, Heidelberg, Germany
Introductory chapters with numerous clear illustrations make the topic accessible to non-experts
Presents measurement of novel relaxation mechanism with overview of theoretical treatment
Back cover:
This book explores the relaxation dynamics of inner-valence-ionized diatomic molecules on the basis of extreme-ultraviolet pump-probe experiments performed at the free-electron laser (FEL) in Hamburg. Firstly, the electron rearrangement dynamics in dissociating multiply charged iodine molecules is studied in an experiment that made it possible to access charge transfer in a thus far unexplored quasimolecular regime relevant for plasma and chemistry applications of the FEL. Secondly the lifetime of an efficient non-radiative relaxation process that occurs in weakly bound systems is measured directly for the first time in a neon dimer (Ne2). Interatomic Coulombic decay (ICD) has been identified as the dominant decay mechanism in inner-valence-ionized or excited van-der-Waals and hydrogen bonded systems, the latter being ubiquitous in all biomolecules. The role of ICD in DNA damage thus demands further investigation, e.g. with regard to applications like radiation therapy.
Contents:
Introduction.- Photoionization and Interatomic Coulombic Decay.- Free-Electron Lasers.- Experimental Setup.- Data Analysis.- Ionization Dynamics of I2 in XUV and IR Laser Pulses.- ICD Lifetime in Ne2.- Conclusions and Outlook.- Appendices.
PRODUCT DETAILS
Publisher: Springer (Springer International Publishing)
Publication date: January, 2015
Pages: 213
Weight: 473g
Availability: Not available (reason unspecified)
Subcategories: Radiology
From the same series
Katrine Kirkeby Skeby
Thomas R. Mazur
Florian de Nanteuil
Humeshkar Bhaskar Nemala
Janet T. F. Lau
Tsubasa Inokuma
Anja Schmidt
Jonathan Bortfeldt
Fiona Hatton
Mathias Munschauer
Philip Bittihn
Ali Kemal Yetisen
Maria Jesus Lerma Garcia
Martin Lorenz Stein
Ismail Adeniran
Margarita Puentes Vargas
Jianxian Gong
Colm Duffy
Zaozao Qiu
Jason A. Woolford
Michael A. Colman
Tsukasa Mizuhara
Christopher Schirwitz
Janet T. F. Lau
Chiara Gualandi
Chen Davidovich
Yusuke Ohta
Tsubasa Inokuma
Anja Schmidt
Maria Jesus Lerma Garcia
Jane Becker
Colm Duffy
Zaozao Qiu
Jason A. Woolford
Chiara Gualandi
Chen Davidovich
Yusuke Ohta