(To see other currencies, click on price)
MORE ABOUT THIS BOOK
Main description:
Quorum sensing (QS) describes a chemical communication behavior that is nearly universal among bacteria. Individual cells release a diffusible small molecule (an autoinducer) into their environment. A high concentration of this autoinducer serves as a signal of high population density, triggering new patterns of gene expression throughout the population. However QS is often much more complex than this simple census-taking behavior. Many QS bacteria produce and detect multiple autoinducers, which generate quorum signal cross talk with each other and with other bacterial species. QS gene regulatory networks respond to a range of physiological and environmental inputs in addition to autoinducer signals. While a host of individual QS systems have been characterized in great molecular and chemical detail, quorum communication raises many fundamental quantitative problems which are increasingly attracting the attention of physical scientists and mathematicians. Key questions include: What kinds of information can a bacterium gather about its environment through QS? What physical principles ultimately constrain the efficacy of diffusion-based communication? How do QS regulatory networks maximize information throughput while minimizing undesirable noise and cross talk? How does QS function in complex, spatially structured environments such as biofilms? Previous books and reviews have focused on the microbiology and biochemistry of QS. With contributions by leading scientists and mathematicians working in the field of physical biology, this volume examines the interplay of diffusion and signaling, collective and coupled dynamics of gene regulation, and spatiotemporal QS phenomena. Chapters will describe experimental studies of QS in natural and engineered or microfabricated bacterial environments, as well as modeling of QS on length scales spanning from the molecular to macroscopic. The book aims to educate physical scientists and quantitative-oriented biologists on the application of physics-based experiment and analysis, together with appropriate modeling, in the understanding and interpretation of the pervasive phenomenon of microbial quorum communication.
Contents:
Chapter 1. Introduction.- Chapter 2. Modeling of Signal Transduction by The Quorum-Sensing Pathway in the Vibrios.- Chapter 3. Stochastic Effects in Quorum Sensing.- Chapter 4. Spatial Structure of Microbes in Nature and the Biophysics of Cell-Cell Communication.- Chapter 5. Functionality of Autoinducer Systems in Complex Environments.- Chapter 6. Localization of Quorum Sensing by Extracellular Polymeric Substances (EPS): Considerations of in Situ Signaling.- Chapter 7. Swimming in Information? Physics Limits to Learning by Quorum Sensing.- Chapter 8. Interplay Between Sibling Bacterial Colonies.- Chapter 9. Mathematical Insights Into the Role of Feedback in Quorum-Sensing Architectures.- Chapter 10. The Role of Biosurfactants in Bacterial Systems.- Chapter 11. Ecology of a Simple Synthetic Biofilm.- Chapter 12. Engineering Cell-to-Cell Communication To Explore Fundamental Questions in Ecology and Evolution.
PRODUCT DETAILS
Publisher: Springer (Springer-Verlag New York Inc.)
Publication date: September, 2014
Pages: 296
Weight: 5685g
Availability: Available
Subcategories: Genetics
From the same series
Gail ter Haar
Francisco V. Sepulveda
Raquel Cruz Conceição
Igor S. Aranson
Marek Prochazka
Mair Zamir
Martin Beckerman
Marcos d'Ávila Nunes
Sergey Ermakov
David Issadore
Thomas Lindblad
Victor Kolikov
Adam Douglass
Kelvin Kian Loong Wong
Eugenijus Kaniusas
Peter Lenz
Stephen Dunne
Bharat Bhushan
Eugenijus Kaniusas
Nikolay V Dokholyan
Claus Hélix-Nielsen
Gustavo Garcia Gomez-Tejedor
Volker Schmidt
Christian Hellmich
Larry A. DeWerd
Geoff Dougherty
Kirill Kulikov
Himanshu Patel
Soroush Nazarpour
R.John Solaro
Thomas Lindblad
Thomas Martin Deserno
Karol Miller
David Issadore
Valery V. Tuchin
Jozef A. Helsen
Bharat Bhushan
Mark C. Williams
E.L. Ritman
Hans Frauenfelder
Philipp O. J. Scherer
Brendan Allison
Bharat Bhushan
Rui Bernardes
Eugenijus Kaniusas
Nancy J. Woolf
David Zhou
Nikolay Dokholyan
Gustavo Garcia Gomez-Tejedor
Howard C. Berg
Ute Linz
Huangxian Ju
Karol Miller
Geoff Dougherty
Christian Hellmich
Thomas Martin Deserno
John Milton
Donglu Shi
Jing Cheng
Martin Beckerman
Toshiyuki Furukawa
Klaus Bethge
N. L. Vekshin
Masao Kaneko
Matthew Simon
Bharat Bhushan
Martin Beckerman
Shin-Ho Chung
Philippe M. Fauchet
Elias Greenbaum
Michael Goitein
Markus Braun
Jozef A. Helsen
Yasuhiro Takeuchi
Dan V. Nicolau
Gabriel B. Mindlin
Mark C. Williams
Sighart F. Fischer
Hans Frauenfelder
Ervin B. Podgorsak
Jörg Fitter
Michael I. Monastyrsky
Roger Narayan
Jack A. Tuszynski
David Zhou
David Zhou
Martin Beckerman
Philippe M. Fauchet
Markus Braun
Michael Goitein
Peter Lenz
Elias Greenbaum
Markolf H. Niemz
Irving P. Herman
Yasuhiro Takeuchi
Shin-Ho Chung
Michael I. Monastyrsky
Valery V. Tuchin
Jörg Fitter