(To see other currencies, click on price)
MORE ABOUT THIS BOOK
Main description:
Cell motility is a fascinating example of cell behavior which is fundamentally important to a number of biological and pathological processes. It is based on a complex self-organized mechano-chemical machine consisting of cytoskeletal filaments and molecular motors. This network is highly dynamic, but able to show precise spatial and temporal organization. The machine is regulated by a complex network of biochemical reactions coupled to force and movement generating processes.
In general, the cytoskeleton is responsible for the movement of the entire cell and for movements within the cell. There are two ways by which cells can move: swimming (i.e. movement through liquid water) and crawling (i.e. movement across a rigid surface). Swimming cells experience viscous forces that are orders of magnitude greater than inertial forces. Therefore, swimming cells undergo an non-symmetric (i.e. non-reciprocal) sequence of shape changes. While for many bacterial cells motion is caused by the rotation of flagella, most swimming eukaryotic cells use the beating of hairlike extensions (such as cilia) to propel themselves through the liquid.
Of biological importance are not only the movements of the cell as whole but also movements within the cell boundaries. For example, during mitosis the replicated chromosomes are cleaved and pulled to opposite poles of the cell by the mitotic spindle. Not only chromosomes, but also many other large molecules must be moved to specific locations within the cell. This can be achieved with active transport by molecular motors which move along cytoskeletal filaments. This motion is much more precise and quicker than diffusional motion. Motor proteins are essential for many processes of cellular motion. There is a whole variety of different motors. The most important classes include: linear motors (such as myosin, kinesin and dynein), rotatory motors (such as ATP synthase and bacterial flagella), and nucleic acid motors (such as helicases and topoisomerases). The linear motors use ATP to move along filaments. But they are much more than simple transporters. Two headed motors attach to adjacent filaments leading to sliding of oppositely oriented filaments (which is responsible for, e.g., muscle contraction). These induced interactions give rise to a complex cooperative behavior of collections of motors allowing cells to actively deform their shape.
On the other hand, single motors can exhibit more complex shape changes. For example, ATPsynthase (the motor which produces ATP) performs a rotational motion. While the biological function of the fluid flow generated by this motor is so far not understood, other rotatory motors enable bacteria to swim. For example, the flagellum of E.coli uses an ion flux to drive its rotation.
Feature:
Brings together state-of-the art research on cell behavior of fundamental importance to many normal biological and pathological processes
Presents interdisciplinary coverage of the field with contributions from biologists and theoretical and experimental physicists
Discusses a variety of molecular motors used by different organisms for movements of the cell as a whole and within the cell boundaries
Back cover:
Cell motility is a fascinating example of cell behavior which is fundamentally important to a number of biological and pathological processes. It is based on a complex self-organized mechano-chemical machine consisting of cytoskeletal filaments and molecular motors. In general, the cytoskeleton is responsible for the movement of the entire cell and for movements within the cell. The main challenge in the field of cell motility is to develop a complete physical description on how and why cells move. For this purpose new ways of modeling the properties of biological cells have to be found. This long term goal can only be achieved if new experimental techniques are developed to extract physical information from these living systems and if theoretical models are found which bridge the gap between molecular and mesoscopic length scales. Cell Motility gives an authoritative overview of the fundamental biological facts, theoretical models, and current experimental developments in this fascinating area.
Contents:
-The Physics Of Listeria Propulsion. -Biophysical Aspects of Actin-Based Cell Motility in Fish Epithelial Keratocytes. -Directed motility and Dictyostelium aggregation. -Microtubule Forces and Organization. -Mechanisms of Molecular Motor Action and Inaction. -Molecular mechanism of Mycoplasma gliding - a novel cell motility system. -Hydrodynamics and rheology of active polar filaments. -Collective effects in arrays of cilia and rotational motors.
PRODUCT DETAILS
Publisher: Springer (Springer New York)
Publication date: November, 2007
Pages: 250
Weight: 573g
Availability: Not available (reason unspecified)
Subcategories: Biomedical Engineering, Physiology
From the same series
Gail ter Haar
Francisco V. Sepulveda
Raquel Cruz Conceição
Igor S. Aranson
Marek Prochazka
Mair Zamir
Martin Beckerman
Marcos d'Ávila Nunes
Sergey Ermakov
David Issadore
Thomas Lindblad
Victor Kolikov
Adam Douglass
Kelvin Kian Loong Wong
Eugenijus Kaniusas
Peter Lenz
Stephen J. Hagen
Stephen Dunne
Bharat Bhushan
Eugenijus Kaniusas
Nikolay V Dokholyan
Claus Hélix-Nielsen
Gustavo Garcia Gomez-Tejedor
Volker Schmidt
Christian Hellmich
Larry A. DeWerd
Geoff Dougherty
Kirill Kulikov
Himanshu Patel
Soroush Nazarpour
R.John Solaro
Thomas Lindblad
Thomas Martin Deserno
Karol Miller
David Issadore
Valery V. Tuchin
Jozef A. Helsen
Bharat Bhushan
Mark C. Williams
E.L. Ritman
Hans Frauenfelder
Philipp O. J. Scherer
Brendan Allison
Bharat Bhushan
Rui Bernardes
Eugenijus Kaniusas
Nancy J. Woolf
David Zhou
Nikolay Dokholyan
Gustavo Garcia Gomez-Tejedor
Howard C. Berg
Ute Linz
Huangxian Ju
Karol Miller
Geoff Dougherty
Christian Hellmich
Thomas Martin Deserno
John Milton
Donglu Shi
Jing Cheng
Martin Beckerman
Toshiyuki Furukawa
Klaus Bethge
N. L. Vekshin
Masao Kaneko
Matthew Simon
Bharat Bhushan
Martin Beckerman
Shin-Ho Chung
Philippe M. Fauchet
Elias Greenbaum
Michael Goitein
Markus Braun
Jozef A. Helsen
Yasuhiro Takeuchi
Dan V. Nicolau
Gabriel B. Mindlin
Mark C. Williams
Sighart F. Fischer
Hans Frauenfelder
Ervin B. Podgorsak
Jörg Fitter
Michael I. Monastyrsky
Roger Narayan
Jack A. Tuszynski
David Zhou
David Zhou
Martin Beckerman
Philippe M. Fauchet
Markus Braun
Michael Goitein
Elias Greenbaum
Markolf H. Niemz
Irving P. Herman
Yasuhiro Takeuchi
Shin-Ho Chung
Michael I. Monastyrsky
Valery V. Tuchin
Jörg Fitter