(To see other currencies, click on price)
MORE ABOUT THIS BOOK
Main description:
Physics and the life sciences have established new connections within the past few decades, resulting in biological physics as an established subfield with strong groups working in many physics departments. These interactions between physics and biology form a two-way street with physics providing new tools and concepts for understanding life, while biological systems can yield new insights into the physics of complex systems. To address the challenges of this interdisciplinary area, The Physics of Proteins: An Introduction to Biological Physics and Molecular Biophysics is divided into three interconnected sections. In Parts I and II, early chapters introduce the terminology and describe the main biological systems that physicists will encounter. Similarities between biomolecules, glasses, and solids are stressed with an emphasis on the fundamental concepts of living systems. The central section (Parts III and IV) delves into the dynamics of complex systems. A main theme is the realization that biological systems, in particular proteins, do not exist in unique conformations but can assume a very large number of slightly different structures. This complexity is captured in the concept of a free energy landscape and leads to the conclusion that fluctuations are crucial for the functioning of biological systems. The final chapter of this section challenges the reader to apply these concepts to a problem that appears in the current literature. An extensive series of appendices (Part V) provide descriptions of the key physical tools and analytical methods that have proven powerful in the study of the physics of proteins. The appendices are designed to be consulted throughout the section on protein dynamics without breaking the deductive flow of the logic in the central section of the book.
Feature:
The discussion concentrates on physical tools and properties, emphasizing techniques that are contributing to new developments and avoiding those that are already well established and whose results have already been exploited fully
New tools appear regularly – synchrotron radiation, proton radiology, holography, optical tweezers, and muon radiography, for example, have all been used to open new areas of understanding
Back cover:
Physics and the life sciences have established new connections within the past few decades, resulting in biological physics as an established subfield with strong groups working in many physics departments. These interactions between physics and biology form a two-way street with physics providing new tools and concepts for understanding life, while biological systems can yield new insights into the physics of complex systems. To address the challenges of this interdisciplinary area, The Physics of Proteins: An Introduction to Biological Physics and Molecular Biophysics is divided into three interconnected sections. In Parts I and II, early chapters introduce the terminology and describe the main biological systems that physicists will encounter. Similarities between biomolecules, glasses, and solids are stressed with an emphasis on the fundamental concepts of living systems. The central section (Parts III and IV) delves into the dynamics of complex systems. A main theme is the realization that biological systems, in particular proteins, do not exist in unique conformations but can assume a very large number of slightly different structures. This complexity is captured in the concept of a free energy landscape and leads to the conclusion that fluctuations are crucial for the functioning of biological systems. The final chapter of this section challenges the reader to apply these concepts to a problem that appears in the current literature. An extensive series of appendices (Part V) provide descriptions of the key physical tools and analytical methods that have proven powerful in the study of the physics of proteins. The appendices are designed to be consulted throughout the section on protein dynamics without breaking the deductive flow of the logic in the central section of the book.
Contents:
Biomolecules.- The Hierarchy of Living Things.- Information and Function.- Biomolecules, Spin Glasses, Glasses, and Solids (R. H. Austin1).- Proteins.- Nucleic Acids.- The Genetic Code.- Lipids and Membranes.- Spatial structure of proteins: measure-.- The Secondary Structure.- Tertiary Structure of Proteins.- Myoglobin and Hemoglobin.- The energy landscape and dynamics of.- Conformational Substates.- The Organization of the Energy Landscape.- Reaction Theory.- Supercooled Liquids and Glasses.- Function and dynamics.- Protein Dynamics.- Protein Quantum Dynamics? (R. H. Austin1).- Creative Homework: Dynamics and Function.- Appendices: tools and concepts for the.- Chemical Forces.- Acids and Bases for Physicists.- Thermodynamics for Physicists.- Quantum Chemistry for Physicists.- Energy Levels from Nuclei to Proteins.- Interaction of Radiation with Molecules.- Water (R. H. Austin1).- Scattering of Photons: X-Ray Diffraction.- Electronic Excitations.- Vibrations.- The Nucleus as a Probe (C. E. Schulz1).- Nuclear Magnetic Resonance and Molecular Structure Dynamics (R. H. Austin1).- Neutron Diffraction.
PRODUCT DETAILS
Publisher: Springer (Springer New York)
Publication date: June, 2010
Pages: 446
Weight: 938g
Availability: Not available (reason unspecified)
Subcategories: Biochemistry, Biomedical Engineering, General Issues
MEET THE AUTHOR
A leader in physics research for more than half a century, Hans Frauenfelder spent 40 years as a professor and researcher at the University of Illinois before moving on to Los Alamos Laboratory, where he was the director of the Center for Nonlinear Studies and is now a Laboratory Fellow. Frauenfelder has been elected to the National Academy of Sciences, the American Academy of Arts and Sciences, the Academy Leopoldina and the American Philosophical Society. He also is the recipient of numerous prestigious scientific fellowships and honors.
From the same series
Gail ter Haar
Francisco V. Sepulveda
Raquel Cruz Conceição
Igor S. Aranson
Marek Prochazka
Mair Zamir
Martin Beckerman
Marcos d'Ávila Nunes
Sergey Ermakov
David Issadore
Thomas Lindblad
Victor Kolikov
Adam Douglass
Kelvin Kian Loong Wong
Eugenijus Kaniusas
Peter Lenz
Stephen J. Hagen
Stephen Dunne
Bharat Bhushan
Eugenijus Kaniusas
Nikolay V Dokholyan
Claus Hélix-Nielsen
Gustavo Garcia Gomez-Tejedor
Volker Schmidt
Christian Hellmich
Larry A. DeWerd
Geoff Dougherty
Kirill Kulikov
Himanshu Patel
Soroush Nazarpour
R.John Solaro
Thomas Lindblad
Thomas Martin Deserno
Karol Miller
David Issadore
Valery V. Tuchin
Jozef A. Helsen
Bharat Bhushan
Mark C. Williams
E.L. Ritman
Hans Frauenfelder
Philipp O. J. Scherer
Brendan Allison
Bharat Bhushan
Rui Bernardes
Eugenijus Kaniusas
Nancy J. Woolf
David Zhou
Nikolay Dokholyan
Gustavo Garcia Gomez-Tejedor
Howard C. Berg
Ute Linz
Huangxian Ju
Karol Miller
Geoff Dougherty
Christian Hellmich
Thomas Martin Deserno
John Milton
Donglu Shi
Jing Cheng
Martin Beckerman
Toshiyuki Furukawa
Klaus Bethge
N. L. Vekshin
Masao Kaneko
Matthew Simon
Bharat Bhushan
Martin Beckerman
Shin-Ho Chung
Philippe M. Fauchet
Elias Greenbaum
Michael Goitein
Markus Braun
Jozef A. Helsen
Yasuhiro Takeuchi
Dan V. Nicolau
Gabriel B. Mindlin
Mark C. Williams
Sighart F. Fischer
Ervin B. Podgorsak
Jörg Fitter
Michael I. Monastyrsky
Roger Narayan
Jack A. Tuszynski
David Zhou
David Zhou
Martin Beckerman
Philippe M. Fauchet
Markus Braun
Michael Goitein
Peter Lenz
Elias Greenbaum
Markolf H. Niemz
Irving P. Herman
Yasuhiro Takeuchi
Shin-Ho Chung
Michael I. Monastyrsky
Valery V. Tuchin
Jörg Fitter
CUSTOMER REVIEWS
From the reviews:
“It appears to be written for advanced undergraduates and graduates in physics who are newcomers to biophysics and biochemistry. … The book builds from Frauenfelder’s sketches and hand-drawn diagrams, which impart to the volume a personal touch, to its major theme: Frauenfelder’s insight that protein structures undergo conformational transitions – proteinquakes – through sub-states of approximately equal energy in a rugged, multi-dimensional, conformational-energy landscape.” (H. Richard Leuchtag, Physics Today, May, 2011)