(To see other currencies, click on price)
MORE ABOUT THIS BOOK
Main description:
The book set develops a bridge between physiologic mechanisms and diagnostic human engineering. While the first volume is focused on the interface between physiologic mechanisms and the resultant biosignals, this second volume is devoted to the interface between biosignals and biomedical sensors. That is, in the first volume, the physiologic mechanisms determining biosignals are described from the basic cellular level up to their advanced mutual coordination level. This second volume, considers the genesis of acoustic and optic biosignals and the associated sensing technology from a strategic point of view. As a novelty, this book discusses heterogeneous biosignals within a common frame. This frame comprises both the biosignal formation path from the biosignal source at the physiological level to biosignal propagation in the body, and the biosignal sensing path from the biosignal transmission in the sensor applied on the body up to its conversion to a, usually electric, signal.
Some biosignals arise in the course of the body's vital functions while others map these functions that convey physiological data to an observer. It is highly instructive how sound and light beams interact with biological tissues, yielding acoustic and optic biosignals, respectively. Discussed phenomena teach a lot about the physics of sound and physics of light (as engineering sciences), and, on the other hand, biology and physiology (as live sciences). The highly interdisciplinary nature of biosignals and biomedical sensors is obviously a challenge. However, it is a rewarding challenge after it has been coped with in a strategic way, as offered here. The book is intended to have the presence to answer intriguing "Aha!" questions.
Contents:
Sensing by Electric Biosignals.- Sensing by Acoustic Biosignals.- Sensing by Optic Biosignals.- Sensing by Mechanic Biosignals.
PRODUCT DETAILS
Publisher: Springer (Springer-Verlag Berlin and Heidelberg GmbH & Co. K)
Publication date: March, 2015
Pages: 220
Weight: 4794g
Availability: Available
Subcategories: Biomedical Engineering, General Issues, Physiology, Radiology
From the same series
Gail ter Haar
Francisco V. Sepulveda
Raquel Cruz Conceição
Igor S. Aranson
Marek Prochazka
Mair Zamir
Martin Beckerman
Marcos d'Ávila Nunes
Sergey Ermakov
David Issadore
Thomas Lindblad
Victor Kolikov
Adam Douglass
Kelvin Kian Loong Wong
Peter Lenz
Stephen J. Hagen
Stephen Dunne
Bharat Bhushan
Eugenijus Kaniusas
Nikolay V Dokholyan
Claus Hélix-Nielsen
Gustavo Garcia Gomez-Tejedor
Volker Schmidt
Christian Hellmich
Larry A. DeWerd
Geoff Dougherty
Kirill Kulikov
Himanshu Patel
Soroush Nazarpour
R.John Solaro
Thomas Lindblad
Thomas Martin Deserno
Karol Miller
David Issadore
Valery V. Tuchin
Jozef A. Helsen
Bharat Bhushan
Mark C. Williams
E.L. Ritman
Hans Frauenfelder
Philipp O. J. Scherer
Brendan Allison
Bharat Bhushan
Rui Bernardes
Eugenijus Kaniusas
Nancy J. Woolf
David Zhou
Nikolay Dokholyan
Gustavo Garcia Gomez-Tejedor
Howard C. Berg
Ute Linz
Huangxian Ju
Karol Miller
Geoff Dougherty
Christian Hellmich
Thomas Martin Deserno
John Milton
Donglu Shi
Jing Cheng
Martin Beckerman
Toshiyuki Furukawa
Klaus Bethge
N. L. Vekshin
Masao Kaneko
Matthew Simon
Bharat Bhushan
Martin Beckerman
Shin-Ho Chung
Philippe M. Fauchet
Elias Greenbaum
Michael Goitein
Markus Braun
Jozef A. Helsen
Yasuhiro Takeuchi
Dan V. Nicolau
Gabriel B. Mindlin
Mark C. Williams
Sighart F. Fischer
Hans Frauenfelder
Ervin B. Podgorsak
Jörg Fitter
Michael I. Monastyrsky
Roger Narayan
Jack A. Tuszynski
David Zhou
David Zhou
Martin Beckerman
Philippe M. Fauchet
Markus Braun
Michael Goitein
Peter Lenz
Elias Greenbaum
Markolf H. Niemz
Irving P. Herman
Yasuhiro Takeuchi
Shin-Ho Chung
Michael I. Monastyrsky
Valery V. Tuchin
Jörg Fitter