(To see other currencies, click on price)
MORE ABOUT THIS BOOK
Main description:
This book collates past and current research on one of the most promising emerging modalities for breast cancer detection. Readers will discover how, as a standalone technology or in conjunction with another modality, microwave imaging has the potential to provide reliable, safe and comfortable breast exams at low cost. Current breast imaging modalities include X- ray, Ultrasound, Magnetic Resonance Imaging, and Positron Emission Tomography. Each of these methods suffers from limitations, including poor sensitivity or specificity, high cost, patient discomfort, and exposure to potentially harmful ionising radiation. Microwave breast imaging is based on a contrast in the dielectric properties of breast tissue that exists at microwave frequencies.
The book begins by considering the anatomy and dielectric properties of the breast, contrasting historical and recent studies. Next, radar-based breast imaging algorithms are discussed, encompassing both early-stage artefact removal, and data independent and adaptive beamforming algorithms. In a similar fashion, microwave tomographic reconstruction algorithms are reviewed in the following chapter, introducing the reader to both the fundamental and more advanced algorithms. Apart from imaging, the book also reviews research efforts in extracting clinically useful information from the Radar Target Signature of breast tumours, which is used to classify tumours as either benign or malignant. Finally, the book concludes by describing the current state of the art in terms of prototype microwave breast imaging systems, with a particular emphasis on those which have progressed to the clinical evaluation stage.
This work is motivated by the fact that breast cancer is one of the leading causes of death amongst women in Europe and the US, and the second most common cancer in the world today. Such an important area of research will appeal to many scholars and practitioners.p>
Contents:
1 Introduction. 2 Anatomy and Dielectric Properties of the Breast and Breast Cancer.
2.1 Anatomy of the Breast. 2.2 Breast Cancer. 2.3 More Recent Dielectric Studies.3 Microwave Tomography.
3.1 Introduction. 3.2 Problem Formulation. 3.3 Linear Tomography. 3.4 Non-Linear Microwave Tomography. 4 Confocal Microwave Imaging.
4.1 Introduction. 4.2 Artefact Removal Algorithms. 4.3 Data Independent Beamformers. 4.4 Adaptive Beamforming. 4.5 Path Dielectric Estimation Techniques. 5 Tumour Classification.
5.1 Tumour Numerical Morphological Models. 5.2 Classification of Early-Stage Breast Cancer in Numerical Simulations. 5.3 Classification Based on Radar Target Signature Classification of Tumours. 5.4 Classification of Early-Stage Breast Cancer in 3D Experimental Results.6 Experimental Systems.
6.1 Operational systems. 6.2 Tomographic Systems. 6.3 Radar based ultra-wideband systems.
PRODUCT DETAILS
Publisher: Springer (Springer International Publishing AG)
Publication date: July, 2016
Pages: None
Weight: 3672g
Availability: Available
Subcategories: Biomedical Engineering, Oncology, Radiology
From the same series
Gail ter Haar
Francisco V. Sepulveda
Igor S. Aranson
Marek Prochazka
Mair Zamir
Martin Beckerman
Marcos d'Ávila Nunes
Sergey Ermakov
David Issadore
Thomas Lindblad
Victor Kolikov
Adam Douglass
Kelvin Kian Loong Wong
Eugenijus Kaniusas
Peter Lenz
Stephen J. Hagen
Stephen Dunne
Bharat Bhushan
Eugenijus Kaniusas
Nikolay V Dokholyan
Claus Hélix-Nielsen
Gustavo Garcia Gomez-Tejedor
Volker Schmidt
Christian Hellmich
Larry A. DeWerd
Geoff Dougherty
Kirill Kulikov
Himanshu Patel
Soroush Nazarpour
R.John Solaro
Thomas Lindblad
Thomas Martin Deserno
Karol Miller
David Issadore
Valery V. Tuchin
Jozef A. Helsen
Bharat Bhushan
Mark C. Williams
E.L. Ritman
Hans Frauenfelder
Philipp O. J. Scherer
Brendan Allison
Bharat Bhushan
Rui Bernardes
Eugenijus Kaniusas
Nancy J. Woolf
David Zhou
Nikolay Dokholyan
Gustavo Garcia Gomez-Tejedor
Howard C. Berg
Ute Linz
Huangxian Ju
Karol Miller
Geoff Dougherty
Christian Hellmich
Thomas Martin Deserno
John Milton
Donglu Shi
Jing Cheng
Martin Beckerman
Toshiyuki Furukawa
Klaus Bethge
N. L. Vekshin
Masao Kaneko
Matthew Simon
Bharat Bhushan
Martin Beckerman
Shin-Ho Chung
Philippe M. Fauchet
Elias Greenbaum
Michael Goitein
Markus Braun
Jozef A. Helsen
Yasuhiro Takeuchi
Dan V. Nicolau
Gabriel B. Mindlin
Mark C. Williams
Sighart F. Fischer
Hans Frauenfelder
Ervin B. Podgorsak
Jörg Fitter
Michael I. Monastyrsky
Roger Narayan
Jack A. Tuszynski
David Zhou
David Zhou
Martin Beckerman
Philippe M. Fauchet
Markus Braun
Michael Goitein
Peter Lenz
Elias Greenbaum
Markolf H. Niemz
Irving P. Herman
Yasuhiro Takeuchi
Shin-Ho Chung
Michael I. Monastyrsky
Valery V. Tuchin
Jörg Fitter