(To see other currencies, click on price)
MORE ABOUT THIS BOOK
Main description:
The verrucarins and roridins are secondary metabolites of the soil fungi Myrothecium verrucaria (Albertini et Schweinitz) Ditmar ex Fries and Myrothecium roridum Tode ex Fries. The species Myrothecium belongs to the fungi imperfecti, order of Moniliales, family Tubercularia- ceae (30, 17, 32). The distinction between these and other closely related fungal species is difficult. It has been studied and discussed by various authors (82, 16, 55, 75, 62, 43). Myrothecium species are parasitic on leaves of Gardenia, tomatoes, violets, kidney beans, snapdragons and other common plants. They are also found on decaying tissue and in soil. It was known earlier that cultures of the two species mentioned exhibit cellulolytic properties due to the presence of a very active cellulase which was used for the treatment of cellulose during the production of textiles [for leading references see (42, 66)]. The first investigation of the secondary metabolites of these micro- organisms was carried out by BRIAN and MCGOWAN (16). They isolated a crystalline compound, designated as glutinosin and assigned the formula C4sH60016, from cultures of Metarrhizium glutinosum S.
Pope, which in fact is a Myrothecium species (82, 55). Glutinosin exhibited anti- fungal activity. Eight years later BOWDEN and SCHANTZ (14) described the isolation and characterization of a dermatitic or skinirritating crystal- line compound melting at 38 , and possessing the formula C H 04, 1s 22 from culture filtrates of Myrothecium verrucaria. They suspected the presence of additional biologically active substances.
Contents:
/ Contents.- Recent Developments in the Chemistry of Penicillins.- I. Introduction.- II. Nomenclature.- III. Reactions at the ?-Lactam Ring.- A. Acylation of the 6-Amino Group.- B. Alkylation of the 6-Amino Group.- C. Hydrolysis of the 6-Amido Group.- D. Epimerization at the 6-Position.- E. Diazotization of the 6-Amino Group.- F. Substitution at the 6-Position.- G. Cleavage of the C-7-N-4 Bond.- IV. Reactions at the Thiazolidine Ring.- A. Rearrangements of Penicillin Sulfoxides.- B. Other Thiazolidine Ring Cleavages.- C. Miscellaneous Nuclear Transformations.- D. Modification of the 3-Carboxylic Acid.- V. Conclusion.- References.- The Antibiotic Complex of the Verrucarins and Roridins.- I. Introduction.- II. Production and Isolation.- III. Structure and Chemical Transformations.- 1. Sterols.- 2. Chromane Derivatives.- 2.1. Myrochromanol and Myrochromanone.- 3. Pyrrole Derivatives.- 3.1. Verrucarin E.- 3.2. Verrucarin G.- 4. Macrocyclic Trichothecane Esters.- 4.1. Verrucarol and Roridin C (Trichodermol).- 4.2. Verrucarin A and 2?-Dehydroverrucarin A.- 4.3. Verrucarin B.- 4.4. Verrucarin J.- 4.5. Roridin A.- 4.6. Roridin D.- 4.7. Roridin E.- 4.8. Roridin H.- 5. Wortmannin.- IV. Total Synthesis.- V. Methods of Assay.- VI. Biosynthesis.- 1. Pyrrole Derivatives.- 2. Trichothecane Esters.- VII. Biological Activity.- 1. Antibiotic Activity.- 2. Cytostatic Activity.- 3. Toxicity.- 4. Structure and Biological Activity.- Acknowledgement.- References.- Aflatoxins and Sterigmatocystins.- I. Introduction.- II. Isolation and Characterisation of the Mycotoxins.- III. Structural Elucidation of the Mycotoxins.- 1. Sterigmatocystin.- 2. Other Metabolites Closely Related to Sterigmatocystin.- 3. Aspertoxin.- 4. Aflatoxin-B1, -B2, -Gl, and -G2.- 5. Aflatoxin-M1 and -M2.- 6. Aflatoxin-B2a and -G2a.- IV. Synthesis of the (+/-)-Forms of the Mycotoxins and of Related Compounds.- 1. Tetrahydro-4-hydroxy-6-methoxyfuro[2,3-b]benzofuran.- 2. Tetrahydrodeoxoaflatoxin-B1.- 3. Aflatoxin-B1.- 4. Aflatoxin-B2.- 5. Aflatoxin-G1.- 6. Aflatoxin-M1.- 7. Dihydro-O-methylsterigmatocystin.- 8. O-methylsterigmatocystin.- V. Biogenesis of the Mycotoxins.- 1. Sterigmatocystin.- 2. Aflatoxin-B1.- VI. Conclusion.- References.- Flavonoid-Glykoside.- I. Strukturtypen von Flavonoid-O-Glykosiden und ihre Verbreitung.- 1. Glykosidierungsmuster.- 2. O-Monoside.- 3. O-Bioside.- 4. O-Trioside, Tri-, Tetra- und Poly-O-Glykoside.- 5.O-Glykuronide.- 6. Acyl-O-Glykoside.- II. Flavonoid-C-Glykoside.- III. Synthese von Flavonoidglykosiden.- 1. Darstellung von Acetobromzuckern.- 2. Synthese von O-Monosiden und O-Biosiden.- a) Glykosidierung der C7-OH-Gruppe.- b) Glykosidierung der C3-OH-Gruppe.- c) Glykosidierung der C4?-C2?-C3?-C5-OH-Gruppen.- 3. Synthese von Flavonoid-O-Bisglykosiden.- 4. Synthese von Flavonoid-C-Glykosiden.- Addenda.- Biogenetic-Type Syntheses of Polyketide Metabolites.- I. Introduction.- II. Early Studies.- III. Modern Concepts of Polyketide Biosynthesis.- IV. Experimental Support for the Polyketide Theory.- V. Syntheses of ?-Polycarbonyl Compounds.- 1. 3,5-Diketo Acids and Esters.- 2. 1,3,5-Triketones.- 3. 3,5,7-Triketo Acids and Esters.- 4. 1,3,5,7-Tetraketones.- 5. 3,5,7,9-Tetraketo Acids and Esters.- 6. 1,3,5,7,9-Pentaketones.- 7. 3,5,7,9,11-Pentaketo Acids and Esters.- 8. 1,3,5,7,9,11-Hexaketones.- 9. ?-Heptacarbonyl Compounds.- 10. ?-Octacarbonyl Compounds.- 11. ?-Nonacarbonyl Compounds.- 12. Reduced Polycarbonyl Compounds.- VI. Cyclizations of ?-Polycarbonyl Compounds.- 1. Using Several Ketide Fragments.- 2. Using a Single Polycarbonyl Compound.- a) With 3,5-Diketo Acids.- b) With 1,3,5-Triketones.- c) With 3,5,7-Triketo Acids and Esters.- d) With 1,3,5,7-Tetraketones.- e) With 3,5,7,9-Tetraketo Acids and Esters.- f) With 1,3,5,7,9-Pentaketones.- g) With ?-Hexacarbonyl Compounds.- h) With ?-Heptacarbonyl Compounds.- i) With ?-Octacarbonyl Compounds.- j) With ?-Nonacarbonyl Compounds.- k) With Reduced ?-Polycarbonyl Compounds.- 3. Using Partially Cyclized Polycarbonyl Compounds.- VII. Conclusions.- References.- The Chemistry of Spiro[4.5]Decane Sesquiterpenes.- A. Introduction.- B. The Acoranes and Alaskanes.- 1. Structure Elucidation of the Acorus Spiranes.- 2. The Alaskanes, Precursors of Cedrene.- 3. Mass Spectral Considerations.- 4. Synthesis.- C. The Spirovetivanes.- 1. Structure.- a) Agarospirol.- b) ?-Vetivone and Related Compounds.- 2. Synthesis.- D. Biogenetic Considerations.- 1. The Relationship between Spirovetivanes and Hydronaphthalenic Sesquiterpenes.- 2. Alaskane-Acorane Spiranes as Precursors of Tricyclic Sesquiterpenes.- 3. Chemical Simulation of Biogenetic Pathways involving Spiro[4.5]Decanes.- E. Tables of Naturally Occurring Spiro[4.5]Decanes.- Addendum.- References.- Phorbolesters - the Irritants and Cocarcinogens of Croton Tiglium L..- 1. Introduction.- 2. Fractionation of Croton Oil.- 2.1. General Analytical Chemical Procedures and Biological Assays.- 2.1.1. Methods of Separation and Criteria of Purity.- 2.1.2. Monitoring of Fractionation Steps.- 2.2. Preparation of the Hydrophilic and the Hydrophobic Portions.- 2.3. Phorbol Diesters from the Hydrophilic Portion.- 2.3.1. Isolation and Resolution of Croton Oil Factor Groups A and B.- 2.3.2. Chemical Characterization of the Croton Oil Factors from Groups A and B as Diesters of Phorbol.- 2.4. Higher Phorbol Esters from the Hydrophobic Portion.- 2.4.1. Isolation and Resolution of Croton Oil Factor Groups A' and B'.- 2.4.2. Separation and Chemical Characterization of the Croton Oil Factors from Groups A' and B'.- 3. Chemistry of Phorbol and of the Croton Oil Factors.- 3.1. Structure and Stereochemistry of Phorbol.- 3.2. Reactions Altering the Functional Groups of Phorbol.- 3.2.1. Functional Derivatives of the Carbonyl Group.- Reaction with Carbonyl Reagents.- Reduction of the Carbonyl Group.- 3.2.2. Functional Derivatives of the Hydroxyl Groups.- Phorbol Esters.- Phorbol Ethers.- Oxidation of Single Hydroxyl Groups.- Substitution and Elimination of Hydroxyl Groups.- 3.2.3. Functional Derivatives Involving the C = C-Bonds.- Catalytic Hydrogenation.- Bromination and Hydrobromination.- Oxidation.- 3.3. Structure of the Croton Oil Factors.- 3.3.1. Phorbol Diesters from the Hydrophilic Portion.- 3.3.2. Phorbol Triesters from the Hydrophobic Portion.- 3.4. Reactions Altering the Tigliane Skeleton of Phorbol and of Neophorbol.- 3.4.1. Dehydrogenation of Phorbol and 3-Deoxo-3?-hydroxyphorbol.- 3.4.2. Oxidative Ring Opening of Phorbol and Derivatives.- Ring A.- Ring B.- Rings C and D (Bicyclo[4.1.0]heptane System).- 3.4.3. Rearrangements in Phorbol and Neophorbol involving the Bicyclo[4.1.0]-heptane System.- Crotophorbolone-enol-13,20-diacetate and Acetoxycrotophorbolone-20-acetate.- Phorbobutanone and Phorboisobutanone.- The "Flaschentrager Reaction".- 12,13-Ketol Rearrangement in Neophorbol.- 4. Further Diterpenes and Diterpene Esters from Croton Oil.- 4.1. Chemistry of 4?-Phorbol.- 4.2. Chemistry of 4-Deoxy-4?-phorbol and 4-Deoxyphorbol.- 4.3. Compound Groups D, E, D' and E' from Croton Oil.- 4.4. Composition of Croton Oil with Regard to Diterpenes and their Esters.- 5. On the Biological Activities of the Isolated Diterpenes and their Esters.- 6. Conclusions and Perspectives.- References.- Stereoselektive Totalsynthese von Indolalkaloiden..- Structure, Chemistry, and Biosynthesis of the Melanins..- I. Introduction.- II. Enzymic Nature of Melanogenesis.- 1. Melanogenesis in Invertebrates and Plants.- 2. Melanogenesis in Vertebrates.- 3. The Enzyme.- III. Allomelanins.- 1. Catechol-Melanin.- 2. Natural Allomelanins.- IV. Eumelanins.- 1. Chemical Investigations on Dopa-Melanin and 5,6-Dihydroxyindole-Melanin.- 1.1. Introduction.- 1.2. Studies on Model Compounds.- 1.3. Isotopic and Degradative Studies.- 1.4. Conclusion Regarding the Structure of Melanin.- 1.5. Studies Relevant to the Structure of the Melanoproteins.- 2. Chemical and Biochemical Investigations on Natural Eumelanins.- 2.1. Introduction.- 2.2. Sepiomelanin.- 2.3. Melanin from Melanoma.- 2.4. Melanin from Hair.- 2.5. Melanin from the Eye.- 2.6. Other Melanins.- 3. Investigations on Melanins by Spectroscopic and other Physical Methods.- 3.1. Ultraviolet and Infrared Spectra.- 3.2. X-Ray Diffraction.- 3.3. Electron Spin Resonance.- 4. Adrenochrome-Melanin.- 5. Dopamine-Melanin.- V. Phaeomelanins.- VI. Conclusions.- References.- Addendum.- Mechanisms of Corrin Dependent Enzymatic Reactions..- I. Introduction.- II. Nomenclature.- III. Properties and Reactions of Corrins and Related Compounds.- 1. Vitamin B12 Chemistry.- 2. Vitamin B12 Model Compounds.- 3. Coenzyme B12 Reactions.- IV. Coenzyme B12 Dependent Enzymatic Reactions.- 1. Dioldehydrases.- 2. Ethanolamine Deaminase.- 3. Ribonucleotide Reductase.- 4. Mutases.- 5. Aminomutases.- V. Corrin Dependent Enzymatic Reactions.- 1. Methane Biosynthesis.- 2. Acetate Biosynthesis.- 3. Methylarsine Biosynthesis.- 4. Methylmercury Formation.- 5. Methionine Biosynthesis.- References.- Namenverzeichnis. Author Index.- Sachverzeichnis. Subject Index.
PRODUCT DETAILS
Publisher: Springer (Springer Verlag GmbH)
Publication date: November, 2011
Pages: None
Weight: 1074g
Availability: Available
Subcategories: Biochemistry, Pharmacology
From the same series
E. Winterfeldt
R. D. H. Murray
M. Glasenapp-Breiling
A. Douglas Kinghorn
Gordon W. Gribble
J. Bermejo Barrera
L. Zechmeister
Johann H. Mulzer
A. Douglas Kinghorn
Gordon W. Gribble
Johann H. Mulzer